

Modern Ground Control Management

Richard Hudson

Geotechnical Engineer
Resolution Copper Mining

April 30, 2009

Resolution Copper Mining

- Resolution Copper Mining (RCM) is a limited liability company
- Ownership:
 - Resolution Copper Company (55%), a Rio Tinto plc subsidiary
 - BHP Copper, Inc. (45%), a BHP-Billiton plc subsidiary
- Resolution Copper Company is the manager of RCM

Regional Map

Local Area

Apache Leap

Town of Superior

Project Area Aerial View

Resolution Project Area Perspective

Ground Control Management

- Ground Control Management Plan
 - Describes the methodology for development of minimum ground support standards, where and how they are stored and how they are implemented and verified
 - Design, Implement, Verify
- Detailed Breakdown Structure
 - Define Responsibilities/Determine Necessary Skill Sets
 - Rock Mass Characterization /Recognition of Ground Conditions
 - Geotechnical Design Methodology and Communication
 - Quality of Installation and Workmanship
 - Monitoring/ Verification
 - Optimization
 - Repeat

Roles and Responsibilities

- Define the roles and responsibilities of personnel involved in ground support activities
- Identify the geotechnical skill-sets required for each role, including the necessary training
- Only qualified individuals must perform ground support designs and inspections
- Determine accountability matrix (Responsible, accountable, support)

Roles and Responsibilities (Cont.)

Personnel Development/ Training

- Training
 - Onsite-Training by geotech engineer
 - Specific classes related to ground control administered by third party
 - MSHA Training
 - New Hirer Training

Personnel

- Relationships are important
- Miners (Knowledge/ skill set)
 - Must be able to identify changes in ground conditions
 - Must understand how support should be installed
- Engineers (Knowledge / skill set)
 - Able to identify changes and how to control specific types of failures
 - Be familiar with different types of support systems

Rock Mass Characterization

- What information is required for this design?
- What detail is required to perform the design?
- In what manner should the data be collected?
 - Drill Holes
 - Surface Mapping
 - Drift Mapping

Rock Mass Characterization Example

- Core Logging
 - Structure Orientation
 - Geotechnical Data Collection
 - Joint Information
 - RQD
 - Mirco-defects
 - Strength Estimates
 - Point Load Test
 - UCS Testing
 - Triaxial Testing
- Data Verification
 - QA/QC

Rock Mass Characterization Example (Cont.)

- Photogrammetry
 - Adam Technology is being utilized for rapid mapping and data collection
 - Geology and Geotech information is being collected on a routine basis
- Uses
 - The systems are being used for a number of things, including but not limited to:
 - Geotechnical Characterization
 - Geologic Mapping
 - Quality Control
 - Shaft Sinking
 - Lateral Development

Recognition of Ground Conditions

- Understanding the Rock Mass
 - Failure
 - Stress
 - Gravity
 - Seismicity

Recognition of Ground Conditions (cont.)

- Controlling the Rock Mass
 - Blasting Practices
 - Available Information
 - Current ground conditions (Communication)
 - Has work been conducted in this type of ground before?
 - Other operator's experience with similar ground
 - Simulated
 - Numerical
 - FLAC
 - Phase
 - Empirical
 - Rock mass ratings
 - Ground Response Curve

Ground Support Design Methodology

- Past experience
 - Review previous ground support designs
 - Internal and external communication
- Empirical Relationships
 - Q, RMR, GSI
 - Determines initial ground support spec to be further compared with other methods

- UNWEDGE
 - Perform wedge analysis and determine bolt length, capacity and spacing for comparison with empirical estimates
- Numerical Analysis
 - Use Phase or FLAC to perform stress analysis

Support System Selection

- How will it be installed?
 - Jack Legs
 - Modern bolting rigs
 - Shotcrete?
- What are the limitations and potential safety issues with installing the required support?
 - Jack Legs
 - Resin Rebars
 - Mesh Handling
 - Manual spraying of shotcrete?
- Final design communication
 - How does the information get distributed?

Quality of Installation and Workmanship

- Clear instructions for installation
 - Blast design
 - Timing of installation
 - Installation steps
- Design Specifics
 - Bolt Spacing
 - Bolt Lengths
 - Surface Support Requirements (Mesh, shotcrete)
 - Hole Diameters
 - Encapsulation requirements
 - Bolt angle

Monitoring/ Verification

- > System performance
 - Pull Testing
 - Bolt appearance
 - Corrosion
 - Pull through
 - Bolt supplier
 - Material Properties
- Excavation Monitoring
 - Extensometers
 - Closure monitoring
 - Visual inspection (water, loose, cracks)
- Has everything been installed to design standard?

Optimization

- Lessons Learned
 - Applying new information to current design or future designs
 - Communicating the information
- Support Optimization
 - Waste Reduction (bolts, shotcrete, etc ...)
 - Better rock mass response
 - Over-break reduction
 - Installation speed and safety

Potential Design Deficiencies

- Design Issues
 - Failure not correctly identified
 - Bolt length or capacity insufficient
 - Input parameters incorrect
- Installation Issues
 - Below standard blasting
 - Hole Diameter Incorrect
 - Resin pass due
 - Material issues (bolt quality)
 - Improper bolt angle
 - Poor blasting

Closing

Your Contribution

Everybody has a role to play

Take pride in the quality of the underground workings

Be safe

Thank you! Questions?

