Modern Ground Control Management

Richard Hudson
Geotechnical Engineer
Resolution Copper Mining

April 30, 2009
Resolution Copper Mining

- Resolution Copper Mining (RCM) is a limited liability company

- **Ownership:**
 - Resolution Copper Company (55%), a Rio Tinto plc subsidiary
 - BHP Copper, Inc. (45%), a BHP-Billiton plc subsidiary

- Resolution Copper Company is the manager of RCM
Regional Map
Local Area

Apache Leap

Town of Superior
Project Area Aerial View
Resolution Project Area Perspective
Ground Control Management

- **Ground Control Management Plan**
 - Describes the methodology for development of minimum ground support standards, where and how they are stored and how they are implemented and verified
 - Design, Implement, Verify

- **Detailed Breakdown Structure**
 - Define Responsibilities/Determine Necessary Skill Sets
 - Rock Mass Characterization /Recognition of Ground Conditions
 - Geotechnical Design Methodology and Communication
 - Quality of Installation and Workmanship
 - Monitoring/ Verification
 - Optimization
 - Repeat
Roles and Responsibilities

- Define the roles and responsibilities of personnel involved in ground support activities
- Identify the geotechnical skill-sets required for each role, including the necessary training
- Only qualified individuals must perform ground support designs and inspections
- Determine accountability matrix (Responsible, accountable, support)
Roles and Responsibilities (Cont.)

- **Personnel Development/ Training**
 - **Training**
 - Onsite-Training by geotech engineer
 - Specific classes related to ground control administered by third party
 - MSHA Training
 - New Hirer Training
 - **Personnel**
 - Relationships are important
 - Miners (Knowledge/ skill set)
 - Must be able to identify changes in ground conditions
 - Must understand how support should be installed
 - Engineers (Knowledge / skill set)
 - Able to identify changes and how to control specific types of failures
 - Be familiar with different types of support systems
Rock Mass Characterization

- What information is required for this design?
- What detail is required to perform the design?
- In what manner should the data be collected?
 - Drill Holes
 - Surface Mapping
 - Drift Mapping
Rock Mass Characterization Example

- **Core Logging**
 - Structure Orientation
 - Geotechnical Data Collection
 - Joint Information
 - RQD
 - Micro-defects
 - Strength Estimates
 - Point Load Test
 - UCS Testing
 - Triaxial Testing

- **Data Verification**
 - QA/QC
Rock Mass Characterization Example (Cont.)

➢ **Photogrammetry**
 - Adam Technology is being utilized for rapid mapping and data collection
 - Geology and Geotech information is being collected on a routine basis

➢ **Uses**
 - The systems are being used for a number of things, including but not limited to:
 • Geotechnical Characterization
 • Geologic Mapping
 • Quality Control
 • Shaft Sinking
 • Lateral Development
Recognition of Ground Conditions

- Understanding the Rock Mass
 - Failure
 - Stress
 - Gravity
 - Seismicity
Recognition of Ground Conditions (cont.)

- **Controlling the Rock Mass**
 - Blasting Practices
 - Available Information
 - Current ground conditions (Communication)
 - Has work been conducted in this type of ground before?
 - Other operator’s experience with similar ground
 - Simulated
 - Numerical
 - FLAC
 - Phase
 - Empirical
 - Rock mass ratings
 - Ground Response Curve
Ground Support Design Methodology

- **Past experience**
 - Review previous ground support designs
 - Internal and external communication

- **Empirical Relationships**
 - Q, RMR, GSI
 - Determines initial ground support spec to be further compared with other methods

- **UNWEDGE**
 - Perform wedge analysis and determine bolt length, capacity and spacing for comparison with empirical estimates

- **Numerical Analysis**
 - Use Phase or FLAC to perform stress analysis
Support System Selection

- How will it be installed?
 - Jack Legs
 - Modern bolting rigs
 - Shotcrete?

- What are the limitations and potential safety issues with installing the required support?
 - Jack Legs
 - Resin Rebars
 - Mesh Handling
 - Manual spraying of shotcrete?

- Final design communication
 - How does the information get distributed?
Quality of Installation and Workmanship

- Clear instructions for installation
 - Blast design
 - Timing of installation
 - Installation steps

- Design Specifics
 - Bolt Spacing
 - Bolt Lengths
 - Surface Support Requirements (Mesh, shotcrete)
 - Hole Diameters
 - Encapsulation requirements
 - Bolt angle
Monitoring/ Verification

- **System performance**
 - Pull Testing
 - Bolt appearance
 - Corrosion
 - Pull through
 - Bolt supplier
 - Material Properties

- **Excavation Monitoring**
 - Extensometers
 - Closure monitoring
 - Visual inspection (water, loose, cracks)

- Has everything been installed to design standard?
Optimization

- **Lessons Learned**
 - Applying new information to current design or future designs
 - Communicating the information

- **Support Optimization**
 - Waste Reduction (bolts, shotcrete, etc …)
 - Better rock mass response
 - Over-break reduction
 - Installation speed and safety
Potential Design Deficiencies

- **Design Issues**
 - Failure not correctly identified
 - Bolt length or capacity insufficient
 - Input parameters incorrect

- **Installation Issues**
 - Below standard blasting
 - Hole Diameter Incorrect
 - Resin pass due
 - Material issues (bolt quality)
 - Improper bolt angle
 - Poor blasting
Closing

Your Contribution

Everybody has a role to play
Take pride in the quality of the underground workings
Be safe
Thank you!

Questions?